

DESCRIPTION

			5)-1:		VA/n Louis 6
Position	Product	Process	Thickness (nominal)		Weight kg/m ²
Pilkington Pyrosto	o® 120-104	(C)		16-	
Glass 1	Pilkington Pyrostop ® 60-101			23.0	
Cavity 1	Air			6.0)
Glass 2	Pilkington Pyrostop ® 60-101	COP CO		23.0	
Product Code	23Ps-6-23Ps	(g. 11/10.		52.0	108.00

PERFORMANCE

Light			
Transmittance	LT	75%	
	UV %	NPD	
Reflectance Out	LR out	14%	
Reflectance In	LR in	14%	
Performance Code			
U _g -value/Light/Energy	(3)	2.6 / 75 / 65	
Ra		98	
The values of some of characte	eristics are displayed a	s NPD. This	

<u>. Th </u>		
Energy		
Direct Transmittance	ET	56%
Reflectance	ER	11%
Absorptance	EA	32%
Total Transmittance	g	65%
Shading Coefficient Total	STATE OF THE STATE	0.75
Shading Coefficient Shortway	e	0.65
Sound Reduction	$R_w(C;C_{tr}) dB$	42 (-1; -4)
Thermal Transmittance	W/m ² K	2.6

Pilkington Spectrum allows you to combine a wide range of products available from Pilkington and determine their key properties such as light transmittance, g value and U value. The program includes restrictions that prevent some combinations being selected that may be considered unwise or impractical. Even with these restrictions, it is still possible to create product combinations that may not be available from your supplier. Please check with your supplier that your chosen product combination is possible, available in the sizes required and in a timescale appropriate to your project. Furthermore, it is essential that you check that your product combination is appropriate for satisfying local, regional, national and other project-specific requirements.

Calculations are made according to EN standards 410 and 673/12898

Pilkington Spectrum Version UK:7.1.2

stands for No Performance Determined.

28/06/2017

